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In this paper we discuss an algorithm for calculation of the temperature-dependent
anharmonic correction to the phonon spectrum in atomic and molecular crystals. We
show how the equation of motion method can be used to compute corrections of arbi-
trary perturbation order to the phonon self-energy. Complete analytical expressions
up to orderλ6 are obtained as an application of the method.c© 2000 Academic Press
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1. INTRODUCTION

The decay of vibrational excitations in crystalline solids is due to anharmonic pertur-
bations in which the phonons exchange energy and is most compactly described in terms
of Green’s functions [1–4]. The poles of the single-particle Green’s function for nonin-
teracting phonons (harmonic approximation) correspond to the harmonic frequencies of
the crystal. The Green’s function for interacting phonons instead has poles in the complex
plane. The anharmonic correction to the harmonic frequency is thus a complex quantity, the
self-energy, whose real part corresponds to a frequency shift and whose imaginary part is
related to the lifetime of the elementary excitation [4–6]. In the framework of perturbation
theory [2, 3, 7, 8], the self-energy can be written as a summation of contributions, which
are represented as Feynman’s diagrams describing specific decay processes and which can
be grouped in perturbation ordersλ2, λ4, λ6 . . ..

Both experimentally, by investigating the temperature dependence of the phonon life-
times [9–13], and theoretically, by numerically computing a few high-order contributions
[14–18], it has been found that high-order processes can be quite important. All contribu-
tions to the self-energy at the two lowest orders, namelyλ2 andλ4, are completely known
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[19–21]. At higher orders only contributions from a single kind of diagram are normally
available [17]. Diagrams for which no expression is known are simply ignored in actual cal-
culations. Though very successful in some cases [14, 17, 22], this is clearly an uncontrolled
approximation without a clear justification [17].

In a past study [21], we proposed a general theoretical approach based on the equa-
tion of motion method [23–26] for evaluating the self-energy at any order. This approach
was applied to the determination of theλ4 contribution to the self-energy. In the present
study, we describe a practical implementation of the method using a computer-aided tech-
nique for determining the analytical expression of any connected diagram in terms of the
coupling coefficient, resonance factors, and boson occupation numbers. As a nontrivial
application and as a step toward better comprehension of the convergence properties of
the perturbation series for the Green’s function, we have found all contributions at order
λ6.

Recently, Shukla and Cowley [27] proposed an accurate analytical expression for the
free energy and the equation of state of anharmonic Lennard–Jones solids near melting,
which was tested against Monte Carlo calculations. Those expressions were obtained by
summing up infinite subsets of free energy diagrams derived by self-energy insertion of
the knownλ2 andλ4 contributions. The present work, by yielding the completeλ6 or-
der, also makes available someλ6 self-energy contributions which cannot be derived by
self-energy insertion of lower order diagrams, and hence may provide an opportunity to
improve Shukla’s and Cowley’s result.

The paper is organized as follows. In Section 2 we briefly recall the theoretical foundation
of the phonon–antiphonon formalism [21] for the equation of motion method in anharmonic
solids. In Section 3 we describe practical implementation of the Green’s function expansion
leading to the determination at the orderλ6 of the self-energy, chosen as a useful and
nontrivial example. We also show how the analytical form of the self-energy arising for
the Green’s function expansion can be rearranged in terms of Feynman diagrams using a
sorting algorithm. Conclusive remarks appear in Section 4.

2. THEORY

The phonon spectrum of a crystal is related [4, 5, 28–31] to the distribution of the poles
of the one-phonon causal Green’s functionG(q) = G(bq, b†q;ω). Herebq andb†q are the
usual boson operators which annihilate and create phonons with unperturbed (harmonic)
energyωq.

Following Ref. [21], we adopt the phonon–antiphonon formalism, in which the anni-
hilation of a phonon with energyω is reinterpreted as the creation of an “antiphonon”
with negative energy−ω. This prescription is implemented by allowing both positive and
negative signs for the phonon labelsq. The signσq = sign(q) of the label distinguishes
between annihilation and creation operators,bq andb−q = b†q, and between positive and
negative energies,ωq andω−q = −ωq. With this notation, all the usual equations involv-
ing phonon operators become extremely compact expressions using only a single kind of
operators.

Using the equation of motion method and adopting the phonon–antiphonon formalism, it
can be shown [21] that a generic Green’s functionG(abc..de) = G(babbbc..bdbe, b−q;ω)



430 DELLA VALLE AND PROCACCI

obeys an algebraic equation involving still higher order Green’s functions:

G(abc..de) = [ω − (ωa + ωb + ωc + · · · + ωd + ωe)]
−1

[
〈[babbbc . . .bdbe, b−q]〉

+
∑
n≥3

n
∑
2..n

σaV−a2..nG(2 . .nbc. .de)+ σbV−b2..nG(a2 . .nc. .de)

+ · · · + σeV−e2..nG(abc. .d2 . .n)

]
. (1)

HereV12..n is thenth order anharmonic coupling coefficient [4, 5, 32] (of perturbation order
λn−2); [,] indicates a commutator, which is evaluated directly; and〈 〉 represents a thermal
average, which is approximated by performing it over the statistical ensemble appropriate to
a purely harmonic Hamiltonian. In this approximation, according to Wick’s theorem [1, 3,
33], the average of a product of creation and annihilation operators is nonzero only if there
are an even number of operators and these occur in conjugate pairsb−b, bb. The average
is equal to the sum of the products of all possible pair averages〈babb〉 = δab〈b−bbb〉, with
the operators in each pair left in the same order as in the original product. The average in
Eq. (1) is thus rewritten as

[ω − (ωa + ωb + ωc + · · · + ωd + ωe)]
−1〈[babbbc . . .bdbe, b−q]〉

= (ω − ωq)
−1(δaqδb−cnc . . . δd−ene . . .+ δbqδa−cnc . . . δd−ene . . .

+ δcqδa−bnb . . . δd−ene . . .+ other terms), (2)

where, for 2n+ 1 operatorsbabbbc . . .bdbe, the sum is extended to all(2n+ 1)!! =
1 · 3 · 5 . . . (2n+ 1) terms allowed by the basic commutator [ba, b−q] = δaq and by Wick’s
theorem, and we have defined

nb = 〈b−bbb〉 =
{
〈b†bbb〉 = n(ωb), for b > 0

〈b−bb−b†〉 = n(ω−b)+ 1, for b < 0.
(3)

Heren(ω) = [exp(ω/kBT)− 1]−1 is the mean phonon occupation number at the tempera-
tureT . Equation (1) defines an infinite chain of coupled equations involving a hierarchy of
Green’s function of increasing order. This chain represents a perturbative expansion which
we truncate at some high order to obtain a finite expression. The initial equation in the
chain, which is Eq. (1) forG(q) = G(bq, b−q;ω), is

(ω − ωq) G(q) = 1+
∑
n≥3

n
∑
23..n

V−q23... nG(23..n). (4)

Neglecting the last term in Eq. (4), we obtain the “bare” (i.e., harmonic) Green’s func-
tion in the absence of anharmonic interactions,G0(q) = (ω − ωq)

−1. G0(q) has a pole at
ω = ωq, the unperturbed phonon energy. To go beyond this 0th order approximation we
evaluate the Green’s functionG(q) by repeatedly substituting Eq. (1) in Eq. (4). Due to the
structure of Eqs. (1) and (2), all terms in the resulting expansion forG(q) contain the factor
(ω − ωq)

−1 = G0(q). Thus, we may write Eq. (4) as

(ω − ωq) G(q) = 1+
∑

0

(ω)G0(q), (5)
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where the function
∑

0(ω) contains the complete sum in Eq. (4) except for the factors
G0(q).

As is clear from the structure of Eqs. (1), (2), and (4), the equation of motion method
yields the complete expression of the self-energy at finite order as a sum of “terms” given
by the product of coupling coefficients, frequency factors, and occupation numbers. A
term can be assigned to a “diagram” according to the topology of the indices within its
coupling coefficientsV12..n, which, due to Wick’s theorem, always occur in conjugate pairs
j,− j : the diagram corresponding to a given term is obtained by drawing a vertex for
each coupling coefficient, with a line for each argument, and then connecting all pairs of
lines that correspond to conjugate summation indicesj,− j . All the diagrams that occur
in the expansion forG(q) have two “external” lines−q andq (arguments not subject to
summations).

The function
∑

0(ω) can be thus expressed as a sum on all diagrams. We define an aux-
iliary function

∑
(ω) as the same sum restricted to the “irreducible” diagrams. Diagrams

where the connection between the external linesq and−q may be severed by cutting just one
internal line are “reducible.” It can be shown [1–4, 8] that Eq. (5) remains valid if the sum on
all diagrams

∑
0(ω) is replaced by the sum on the irreducible diagrams

∑
(ω), and simul-

taneously the bare Green’s functionG0(q) is replaced by the full Green’s functionG(q):

(ω − ωq) G(q) = 1+
∑

(ω)G(q). (6)

This is Dyson’s equation, which may be rewritten asG(q) = [ω − ωq −
∑
(ω)
]−1

. The
full Green’s functionG(q) is thus mathematically similar to the bare Green’s function
G0(q) = (ω − ωq)

−1, except for an energy change
∑
(ω), the self-energy. The pole of

G0(q), at the unperturbed energyω = ωq, is moved to a pole ofG(q), at a new perturbed
energyω ≈ ωq +

∑
(ωq). In general,

∑
(ωq) is complex, with a real part1q that represents

a frequency shift and an imaginary part−0q that may be interpreted in terms of a linewidth
0q or a lifetimeh/0q [4, 5].

3. ALGORITHM AND CALCULATIONS

Our evaluation strategy for the self-energy, which is based on the previous discussion,
has the following steps: (a) expandG(q) to a desired ordern in λ by repeatedly substituting
Eq. (1) in Eq. (4); (b) discard all terms of order higher thanλn; (c) evaluate the thermal
averages with Eq. (2); (d) discard all terms in the expansion forG(q) that are represented
by reducible diagrams; and (e) replaceG0(q) = (ω − ωq)

−1 by G(q).
Since the second term in the brackets of Eq. (1) is at least of orderλ, n+ 1 successive

substitutions are sufficient to eliminate all the Green’s functions to orderλn. A finite expres-
sion forG(q) is thus obtained in terms of coupling coefficientsV12... n, σ j andnj factors,
and frequency factors [ω − (ωa + ωb + · · · + ωc)]−1. To compute the self-energy

∑
(ωq),

we replaceω byωq in the frequency factors.
By analyzing the structure of Eqs. (1), (2), and (4), it can be found that the number of

terms of orderλn in the expansion forG(q) is zero for oddn, andNn = (n+ 1)!! (n+ 1)!/2
for evenn. SinceN2 = 9, N4 = 900, andN6 = 264600, the evaluation ofG(q) beyondλ4,
though a straightforward task in principle, in practice can be performed only by brute force
using a computer. However, since many terms are actually equal and differ only in the
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labeling of the dummy summation indices, a considerable simplification of the end result
should be possible.

The symbolic algebra program that we used initially, Reduce [34], could perform without
any problem the repeated substitution and the thermal averages, but was unable to simplify
the output. Identical terms with different choices for the dummy summation indices appeared
different to the program, which quickly exhausted all the available storage while climbing
up the hierarchy of coupled equations. The Mathematica [35] program also gave the same
problem. We have thus abandoned Reduce and Mathematica and adopted a “divide and
conquer” strategy by partitioning the complete algorithm into a sequence of simple steps.
Several programs have been written to perform the various steps. Each program is designed
to read a sum of terms from a file, transform each term into a mathematically equivalent
form, and pass the transformed sum to the next program for further processing. All the
programs are short and have relatively simple tasks, so that it is easy to prove that they
perform mathematically correct transformations.

To climb up the hierarchy, Eq. (1), and perform the thermal averages, Eq. (2), we have
used two programs written in the pattern scanning and processing language AWK [36]. We
start from a file containing only the single term that we want to calculate, namelyG(q).
Several passes through the program that climbs up the hierarchy, equivalent to applying
Eq. (1) repeatedly, are then performed. At each pass all the Green’s functionG(ab. . . c) are
replaced by thermal averages〈babb . . .bc〉 and higher order Green’s functions. All terms of
order higher thanλ6 are systematically discarded in the process. After 7 passes no Green’s
function is left and the file is passed through the program which computes the thermal
averages. All terms involving averages over an odd number ofbj operators, which are
zero, are discarded, while the averages involving an even number of operators are evaluated
according to Eq. (2). We are thus left with an unsimplified expression forG(q)up to orderλ6.

This first part of the algorithm is very straightforward. Overall we had to consider 2957
Green’s functions, different for the number or order of the arguments, while climbing the
hierarchy. As the thermal averages are performed, 2584 Green’s functions give a nonzero
contribution, yielding a total of 265509 terms which include all terms of orderλ2, λ4, and
λ6. To develop an effective simplification method that allows all the terms to be assigned to
topologically distinct diagrams and that is thus absolutely necessary to produce an usable
result, we have carefully analyzed the reason for the failure of Reduce. At the origin of the
failure is the fact that identical terms may appear in many different forms. However, this
also implies that we have considerable freedom in choosing the appearance of a given term.
We are free to alter the order of the various factors appearing in the term and the order of
the arguments of symmetric functions such asVab... c andzab... c. The dummy summation
indices may be renamed freely. Furthermore, as the sums extend on both positive and
negative values, we are also free to change the sign of the summation indices. Among all
the possible forms in which a term may appear we choose an arbitrary, but unique, canonical
form. Two terms are identical if, and only if, they have the same canonical form.

The canonical form has been defined so that it can be obtained efficiently. The definition,
which is quite convoluted, is briefly sketched in Appendix A. The implementation is based
on a sequence of steps in which the function arguments, the factors in each term, and the
labels of the summation indices are sorted according to some arbitrarily defined order. The
sort algorithm and the other steps in the reduction to canonical form have been implemented
in Pascal [37]. Terms corresponding to reducible diagrams are also recognized and discarded
at this stage, as discussed in Appendix B. After the reduction to canonical form, we sort
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the file of terms. Identical terms, which are adjacent after the sort, are then simply counted.
The simplification process is quite effective: 32718 terms, represented by 192 reducible
diagrams, are discarded, and we are left with 232791 terms represented by 348 topologically
distinct irreducible diagrams which include 3 diagrams of orderλ2, 26 diagrams of order
λ4, and 319 diagrams of orderλ6. All calculations were performed in a few CPU days on a
low-end personal computer.

Typical self-energy contributions of orderλ6, chosen to give a feeling for the kind of
expressions that are obtained, are shown in Fig. 1 along with the corresponding diagrams.
About 40% of the irreducible diagrams represent “instantaneous” processes, such as that
shown in Fig. 1a, in which an incoming phonon is annihilated and immediately recreated at
the same vertex. These are “ω-independent” diagrams, which yield self-energy terms that

FIG. 1. (a) Example ofω-independent irreducible diagrams of orderλ6. Herezab...c = [−(ωa + ωb + · · · +
ωc)]−1. (b) Exampleω-dependent irreducible diagrams of orderλ6.
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TABLE I

Number of Terms and of Connected Diagrams at Various Perturbation Orders,

Classified According to the Dictionary Order of the Coupling Coefficients

ω-dependent ω-independent Reducible

Order Coefficients Terms Diagrams Terms Diagrams Terms Diagrams

2 V4 . . 3 1 . .
V3V3 4 1 2 1 . .

4 V6 . . 15 1 . .
V3V5 48 2 42 3 . .
V4V4 18 1 18 1 9 1
V3V3V4 264 6 84 6 42 4
V3V3V3V3 264 3 36 3 60 4

6 V8 . . 105 1 . .
V3V7 360 2 480 3 . .
V4V6 360 2 390 3 90 2
V5V5 240 2 180 2 . .
V3V3V6 3120 8 1710 8 210 4
V3V4V5 6444 22 2550 16 666 10
V4V4V4 918 2 360 3 297 5
V3V3V3V5 18576 27 4680 19 1944 20
V3V3V4V4 26460 42 5280 25 3960 38
V3V3V3V3V4 85920 62 10020 36 13680 72
V3V3V3V3V3V3 60240 22 3600 12 11760 32

Note.Entries in columns 3–6 refer to irreducible diagrams.

do not depend onωq and contribute only to the real part1q of the self-energy, resulting in
a shift of the phonon energies. The remaining “ω-dependent” diagrams, such as that shown
in Fig. 1b, introduce also an imaginary contributioni0q and describe decay processes.

In Table I, we report the number of terms and of diagrams found for each combination of
coupling coefficientsVn = V12... n, classified asω-dependent,ω-independent, and reducible.
The reducible diagrams are of no interest and are counted only to monitor the efficiency of
the simplification process and to verify that no term is lost.

4. CONCLUSION

In this paper we have presented a computer-aided technique for evaluating the analytical
expression of the phonon self-energy in anharmonic solids, based on the equation of motion
of method combined with the phonon–antiphonon formalism. As an application of the
method, the complete self-energy expression up to orderλ6 has been obtained and then
rearranged, using a sorting reduction scheme, in terms of the Feynmann diagrams commonly
used in the representation of the perturbation series.

The analytical expressions of the self-energy contribution of orderλ2 andλ4 have been
published elsewhere [21]. Examples ofλ6 diagrams are given in Section 3. The complete
self-energy up to orderλ6 is part of the supplementary material available from the au-
thors upon request and also available via the Internet [38]. Since the programs are not
portable, they are not made available. The present implementation of the equation of mo-
tion method is found to be a powerful device for counting, classifying, and determining
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the diagrammatic contributions at orders that are hardly within the reach of conventional
techniques in perturbation theory. However, for practical application, we must remark that
the extremely rapid increase in the number of diagrams with perturbation order (see Table
I) makes a comprehensive calculation at finite orders extremely difficult, if not impossible.
Nevertheless, we hope that the knowledge of an extra order for the series will provide useful
clues for the development of more reasonable approximations or more efficient computa-
tional schemes [27].

APPENDIX A

Canonical Form of a Term

As discussed in the text, the canonical form for a term is defined by choosing (1) the
labels and the signs of the summation indices, (2) the order of the function arguments, and
(3) the order of the factors.

This definition is made in several steps. We initially assign arbitrary labels 1, 2, 3. . . and
arbitrary signs to the summation indices. The orderq,−q, 1,−1, 2,−2 . . . is then chosen
for the function arguments. The order of the factors in the term, which areV , z, n andσ
functions, is defined by the dictionary order of their arguments. The dictionary order of
two lists of arguments is found in the usual way, by comparing in sequence corresponding
elements of the two lists. Equal elements are ignored, and the first pair of unequal elements
determines the order.

Thus, we have completely defined the textual representation of a term, except for arbitrary
permutations and sign changes of the summation indices. Among all such permutations and
sign changes we chose as canonical the one that yields the minimum textual representation
in the dictionary order sense. With this representation, two terms with different canonical
form correspond to the same diagram if and only if the canonical form of their coupling
coefficients is identical.

APPENDIX B

Identification of Reducible Diagrams

We consider, as described in the text, the diagram corresponding to the term. We add two
dummy vertices at the free ends of the “entry” and “exit” lines labeledq and−q, so that
every line connects exactly two vertices, and then assign arbitrary labels 1, 2, 3. . . to the
vertices. For all pairsi, j of vertices we find the numberLi j of lines that connecti and j .
Given the incidence matrixLi j we can obtain the diagram and vice versa, so that the matrix
constitutes a representation of the diagram. The identification of the reducible diagrams is
performed by searching for reducible paths in the incidence matrixLi j . To find out whether
a diagram is still connected after a line has been severed (i.e., after a matrix elementLi j

has been decreased by one), we use a very efficient graph-theoretical algorithm described
in Ref. [39].
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