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In this paper we discuss an algorithm for calculation of the temperature-dependent
anharmonic correction to the phonon spectrum in atomic and molecular crystals. We
show how the equation of motion method can be used to compute corrections of arbi-
trary perturbation order to the phonon self-energy. Complete analytical expressions
up to orderr® are obtained as an application of the method 2000 Academic Press
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1. INTRODUCTION

The decay of vibrational excitations in crystalline solids is due to anharmonic pertt
bations in which the phonons exchange energy and is most compactly described in te
of Green’s functions [1-4]. The poles of the single-particle Green'’s function for nonil
teracting phonons (harmonic approximation) correspond to the harmonic frequencie:
the crystal. The Green'’s function for interacting phonons instead has poles in the comj
plane. The anharmonic correction to the harmonic frequency is thus a complex quantity,
self-energy, whose real part corresponds to a frequency shift and whose imaginary pe
related to the lifetime of the elementary excitation [4—6]. In the framework of perturbatic
theory [2, 3, 7, 8], the self-energy can be written as a summation of contributions, wh
are represented as Feynman’s diagrams describing specific decay processes and whic
be grouped in perturbation ordex§ A4, A5. . ..

Both experimentally, by investigating the temperature dependence of the phonon |
times [9-13], and theoretically, by numerically computing a few high-order contributiot
[14-18], it has been found that high-order processes can be quite important. All contri
tions to the self-energy at the two lowest orders, namélgndi*, are completely known
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[19-21]. At higher orders only contributions from a single kind of diagram are normal
available [17]. Diagrams for which no expression is known are simply ignored in actual
culations. Though very successful in some cases [14, 17, 22], this is clearly an uncontrc
approximation without a clear justification [17].

In a past study [21], we proposed a general theoretical approach based on the e
tion of motion method [23-26] for evaluating the self-energy at any order. This approe
was applied to the determination of thé contribution to the self-energy. In the present
study, we describe a practical implementation of the method using a computer-aided t
nigue for determining the analytical expression of any connected diagram in terms of
coupling coefficient, resonance factors, and boson occupation numbers. As a nontr
application and as a step toward better comprehension of the convergence properti
the perturbation series for the Green’s function, we have found all contributions at or
28,

Recently, Shukla and Cowley [27] proposed an accurate analytical expression for
free energy and the equation of state of anharmonic Lennard—Jones solids near me
which was tested against Monte Carlo calculations. Those expressions were obtaine
summing up infinite subsets of free energy diagrams derived by self-energy insertior
the knownx? and A4 contributions. The present work, by yielding the completeor-
der, also makes available sorh& self-energy contributions which cannot be derived by
self-energy insertion of lower order diagrams, and hence may provide an opportunity
improve Shukla’s and Cowley’s result.

The paper is organized as follows. In Section 2 we briefly recall the theoretical foundat
of the phonon—-antiphonon formalism [21] for the equation of motion method in anharmol
solids. In Section 3 we describe practical implementation of the Green'’s function expans
leading to the determination at the ordeX of the self-energy, chosen as a useful anc
nontrivial example. We also show how the analytical form of the self-energy arising f
the Green’s function expansion can be rearranged in terms of Feynman diagrams usi
sorting algorithm. Conclusive remarks appear in Section 4.

2. THEORY

The phonon spectrum of a crystal is related [4, 5, 28—31] to the distribution of the po
of the one-phonon causal Green’s funct@iq) = G(by, ba; w). Hereby and bg are the
usual boson operators which annihilate and create phonons with unperturbed (harmc
energywy.

Following Ref. [21], we adopt the phonon—antiphonon formalism, in which the anr
hilation of a phonon with energy is reinterpreted as the creation of an “antiphonon’
with negative energy-w. This prescription is implemented by allowing both positive anc
negative signs for the phonon labejsThe signoy = sign(q) of the label distinguishes
between annihilation and creation operatdxsandb_q = b, and between positive and
negative energiesy; andw_q = —wq. With this notation, all the usual equations involv-
ing phonon operators become extremely compact expressions using only a single kin
operators.

Using the equation of motion method and adopting the phonon—antiphonon formalisn
can be shown [21] that a generic Green’s funcii@@bc.de) = G(babpbc..bybe, b_g; w)
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obeys an algebraic equation involving still higher order Green'’s functions:

G(abc.de) = [w — (wa + wp + we + - - - + wg + we)] L [([babbbC ... bgbe, b_q])

+ Z n Z 0aV_a2 nG(2..nbc..de) + o,V_p2 nG(a2..nc..de)

n>3 2.n

+ R + O’evfeznnG(a.bC. . d2. . n):| . (1)

HereVi, ,, is thenth order anharmonic coupling coefficient [4, 5, 32] (of perturbation orde
A"~2); [,] indicates a commutator, which is evaluated directly; andepresents a thermal
average, which is approximated by performing it over the statistical ensemble appropriat
a purely harmonic Hamiltonian. In this approximation, according to Wick’s theorem [1,
33], the average of a product of creation and annihilation operators is nonzero only if th
are an even number of operators and these occur in conjugatébpgits,. The average

is equal to the sum of the products of all possible pair averémyds) = Sap(b_pby), with

the operators in each pair left in the same order as in the original product. The averag
Eq. (1) is thus rewritten as

[© — (wa + @b+ @ + - - - + wg + we)]H{[babpbe . . . bybe, b_q])
= (0 — wq) " (Sagdb—cNc - - - 8d—eNe - - . + SbgdacNec - - - Sd_eNe . . -

+ 8¢q8a—bNp . . . 8d—eNe . . . + Other terms, (2)

where, for 21+ 1 operatorsbybpb; . . . bgbe, the sum is extended to a{bn + D! =
1.3-5...(2n+ 1) terms allowed by the basic commutatbg [b_q] = 824 and by Wick’s
theorem, and we have defined

<b£bb) = N(wp), forb>0

)
(b_pb_pi) = n(w_p) +1, forb <O.

Np = (b_php) = {

Heren(w) = [exp(w/ksT) — 1]~ is the mean phonon occupation number at the temper:
ture T. Equation (1) defines an infinite chain of coupled equations involving a hierarchy
Green'’s function of increasing order. This chain represents a perturbative expansion wl
we truncate at some high order to obtain a finite expression. The initial equation in 1
chain, which is Eqg. (1) foG(q) = G(by, b_q; ®), is

(@—0g) G@) =14 N> V_gs.aG(23.n). 4)

n>3 23.n

Neglecting the last term in Eq. (4), we obtain the “bare” (i.e., harmonic) Green’s fun
tion in the absence of anharmonic interactidBs(q) = (v — a)q)‘l. Go(q) has a pole at
® = wyq, the unperturbed phonon energy. To go beyond this Oth order approximation
evaluate the Green'’s functidb(q) by repeatedly substituting Eq. (1) in Eq. (4). Due to the
structure of Egs. (1) and (2), all terms in the resulting expansio&{qy contain the factor
(w — wq) "t = Go(q). Thus, we may write Eq. (4) as

(@ —wg) G(@) =14 > _(@)Go(q), (5)
0



SERIES EXPANSION FOR PHONON SELF-ENERGY 431

where the function®_,(w) contains the complete sum in Eq. (4) except for the factor
Go(q).

As is clear from the structure of Egs. (1), (2), and (4), the equation of motion meth
yields the complete expression of the self-energy at finite order as a sum of “terms” gi
by the product of coupling coefficients, frequency factors, and occupation numbers
term can be assigned to a “diagram” according to the topology of the indices within
coupling coefficientd/;, », which, due to Wick’s theorem, always occur in conjugate pair
j, —]: the diagram corresponding to a given term is obtained by drawing a vertex
each coupling coefficient, with a line for each argument, and then connecting all pairs
lines that correspond to conjugate summation indigesj. All the diagrams that occur
in the expansion fof5(q) have two “external” lines-q andq (arguments not subject to
summations).

The function)_,(w) can be thus expressed as a sum on all diagrams. We define an a
iliary function > (w) as the same sum restricted to the “irreducible” diagrams. Diagran
where the connection between the external lmasd—qg may be severed by cutting just one
internal line are “reducible.” It can be shown [1-4, 8] that Eq. (5) remains valid if the sum
all diagramsy_(w) is replaced by the sum on the irreducible diagragm@), and simul-
taneously the bare Green’s functi@g(q) is replaced by the full Green’s functidgh(q):

(@ —wg) G(@) =1+ Y _(@)G(Q). (6)

This is Dyson’s equation, which may be rewritten@8)) = [w — wq — Z(w)]fl. The
full Green’s functionG(q) is thus mathematically similar to the bare Green’s functior
Go(q) = (w — wq) 1, except for an energy chang€ (w), the self-energy. The pole of
Go(), at the unperturbed energy= wq, is moved to a pole 06G(q), at a new perturbed
energyw ~ wq + y_(wq). Ingeneraly " (wq) is complex, with a real park that represents
a frequency shift and an imaginary paiT, that may be interpreted in terms of a linewidth
Iy or a lifetimeh/ I'q [4, 5].

3. ALGORITHM AND CALCULATIONS

Our evaluation strategy for the self-energy, which is based on the previous discuss
has the following steps: (a) expa@dq) to a desired ordarin A by repeatedly substituting
Eq. (1) in Eq. (4); (b) discard all terms of order higher thdn (c) evaluate the thermal
averages with Eq. (2); (d) discard all terms in the expansioifay) that are represented
by reducible diagrams; and (e) repla@g(q) = (w — wq)~* by G(q).

Since the second term in the brackets of Eq. (1) is at least of arde#s- 1 successive
substitutions are sufficient to eliminate all the Green’s functions to artiek finite expres-
sion for G(q) is thus obtained in terms of coupling coefficieMs _,, o; andn; factors,
and frequency factorsy — (wa + wp + - - - + wc)] L. To compute the self-energy’ (wy),
we replacey by wq in the frequency factors.

By analyzing the structure of Egs. (1), (2), and (4), it can be found that the number
terms of ordei." in the expansion fo&(q) is zero for oddh, andN, = (n + D! (n + 1)!/2
for evenn. SinceN, = 9, N, = 900, andNg = 264600, the evaluation @(q) beyondi?,
though a straightforward task in principle, in practice can be performed only by brute fol
using a computer. However, since many terms are actually equal and differ only in
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labeling of the dummy summation indices, a considerable simplification of the end res
should be possible.

The symbolic algebra program that we used initially, Reduce [34], could perform witho
any problem the repeated substitution and the thermal averages, but was unable to sim
the output. Identical terms with different choices for the dummy summation indices appea
different to the program, which quickly exhausted all the available storage while climbi
up the hierarchy of coupled equations. The Mathematica [35] program also gave the s
problem. We have thus abandoned Reduce and Mathematica and adopted a “divide
conquer” strategy by partitioning the complete algorithm into a sequence of simple ste
Several programs have been written to perform the various steps. Each program is desi
to read a sum of terms from a file, transform each term into a mathematically equival
form, and pass the transformed sum to the next program for further processing. All
programs are short and have relatively simple tasks, so that it is easy to prove that 1
perform mathematically correct transformations.

To climb up the hierarchy, Eg. (1), and perform the thermal averages, Eq. (2), we h
used two programs written in the pattern scanning and processing language AWK [36].
start from a file containing only the single term that we want to calculate, na@@ly.
Several passes through the program that climbs up the hierarchy, equivalent to appl
Eq. (1) repeatedly, are then performed. At each pass all the Green’s fuGgadn. . c) are
replaced by thermal averagésby, . . . be) and higher order Green'’s functions. All terms of
order higher than® are systematically discarded in the process. After 7 passes no Gree
function is left and the file is passed through the program which computes the therr
averages. All terms involving averages over an odd numbds; ajperators, which are
zero, are discarded, while the averages involving an even number of operators are evalt
accordingto Eq. (2). We are thus left with an unsimplified expressid@ fqy up to ordei..

This first part of the algorithm is very straightforward. Overall we had to consider 29¢
Green'’s functions, different for the number or order of the arguments, while climbing tl
hierarchy. As the thermal averages are performed, 2584 Green'’s functions give a non
contribution, yielding a total of 265509 terms which include all terms of okdek?, and
18. To develop an effective simplification method that allows all the terms to be assignec
topologically distinct diagrams and that is thus absolutely necessary to produce an us
result, we have carefully analyzed the reason for the failure of Reduce. At the origin of
failure is the fact that identical terms may appear in many different forms. However, tt
also implies that we have considerable freedom in choosing the appearance of a given t
We are free to alter the order of the various factors appearing in the term and the orde
the arguments of symmetric functions suchvas_ . andz,p. .. The dummy summation
indices may be renamed freely. Furthermore, as the sums extend on both positive
negative values, we are also free to change the sign of the summation indices. Amon
the possible forms in which a term may appear we choose an arbitrary, but unique, canor
form. Two terms are identical if, and only if, they have the same canonical form.

The canonical form has been defined so that it can be obtained efficiently. The definiti
which is quite convoluted, is briefly sketched in Appendix A. The implementation is bas
on a sequence of steps in which the function arguments, the factors in each term, anc
labels of the summation indices are sorted according to some arbitrarily defined order.
sort algorithm and the other steps in the reduction to canonical form have been impleme
in Pascal [37]. Terms corresponding to reducible diagrams are also recognized and disce
at this stage, as discussed in Appendix B. After the reduction to canonical form, we ¢
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the file of terms. Identical terms, which are adjacent after the sort, are then simply coun
The simplification process is quite effective: 32718 terms, represented by 192 reduc
diagrams, are discarded, and we are left with 232791 terms represented by 348 topologi
distinct irreducible diagrams which include 3 diagrams of ovder26 diagrams of order
A4, and 319 diagrams of ordeP. All calculations were performed in a few CPU days on &
low-end personal computer.

Typical self-energy contributions of ord&P, chosen to give a feeling for the kind of
expressions that are obtained, are shown in Fig. 1 along with the corresponding diagr:
About 40% of the irreducible diagrams represent “instantaneous” processes, such as
shown in Fig. 1a, in which an incoming phonon is annihilated and immediately recreate
the same vertex. These are-fndependent” diagrams, which yield self-energy terms tha

5
(a)
3 4
1 2
q q

27 Vqq2Voi1-234Voa_ys5-5 0109030405 X

X z12234(n1 +n2 — 2)(n3 + ng — 2)(ns — 3)

® =
3 4
q q
1

27 Vq123V_q—1-24V_3_45_5 0102030405 X

X (ng + 1){(2q123 + 2q12-4) 234 [(n1 + 02 — 2)(n3 + ng — 2)]

— Zq123%qi2—4[(n1 + n2 = 2)(n3 — ng) +2(n; — 1)(ny — 1) + 8]}

FIG. 1. (a) Example ofw-independent irreducible diagrams of ordér Herezy, . = [—(wa +wp + - - +
we)] L. (b) Examplew-dependent irreducible diagrams of ordér
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TABLE |
Number of Terms and of Connected Diagrams at Various Perturbation Orders,
Classified According to the Dictionary Order of the Coupling Coefficients

w-dependent w-independent Reducible

Order Coefficients Terms Diagrams Terms Diagrams Terms Diagrams

2V, . . 3 1
(VAVA 4 1 2 1

4 Vg . . 15 1
VaVs 48 2 42 3 .
V.V, 18 1 18 1 9 1
(VAVAVA 264 6 84 6 42 4
VaVsVs Vs 264 3 36 3 60 4

6 Ve . . 105 1
YAVA 360 2 480 3 ) )
(VAVA 360 2 390 3 90 2
VsVs 240 2 180 2 ) )
(VAVAVA 3120 8 1710 8 210 4
VsV, Vs 6444 22 2550 16 666 10
(VAVAYA 918 2 360 3 297 5
VaVsVsVs 18576 27 4680 19 1944 20
Va5V, V 26460 42 5280 25 3960 38
VaVsVs VsV, 85920 62 10020 36 13680 72
VaVaVsVaVaVs 60240 22 3600 12 11760 32

Note.Entries in columns 3—6 refer to irreducible diagrams.

do not depend omy and contribute only to the real paki; of the self-energy, resulting in
a shift of the phonon energies. The remainiagdependent” diagrams, such as that showr
in Fig. 1b, introduce also an imaginary contributidfy and describe decay processes.

In Table |, we report the number of terms and of diagrams found for each combination
coupling coefficient¥,, = Vi, n, classified as-dependenty-independent, and reducible.
The reducible diagrams are of no interest and are counted only to monitor the efficienc
the simplification process and to verify that no term is lost.

4. CONCLUSION

In this paper we have presented a computer-aided technique for evaluating the analy
expression of the phonon self-energy in anharmonic solids, based on the equation of mc
of method combined with the phonon-antiphonon formalism. As an application of t|
method, the complete self-energy expression up to orfléras been obtained and then
rearranged, using a sorting reduction scheme, in terms of the Feynmann diagrams comn
used in the representation of the perturbation series.

The analytical expressions of the self-energy contribution of ordandi* have been
published elsewhere [21]. Examples)§fdiagrams are given in Section 3. The complete
self-energy up to ordex® is part of the supplementary material available from the au
thors upon request and also available via the Internet [38]. Since the programs are
portable, they are not made available. The present implementation of the equation of
tion method is found to be a powerful device for counting, classifying, and determinir
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the diagrammatic contributions at orders that are hardly within the reach of conventio
techniques in perturbation theory. However, for practical application, we must remark t
the extremely rapid increase in the number of diagrams with perturbation order (see T
I) makes a comprehensive calculation at finite orders extremely difficult, if not impossib
Nevertheless, we hope that the knowledge of an extra order for the series will provide us
clues for the development of more reasonable approximations or more efficient comp
tional schemes [27].

APPENDIX A

Canonical Form of a Term

As discussed in the text, the canonical form for a term is defined by choosing (1) |
labels and the signs of the summation indices, (2) the order of the function arguments,
(3) the order of the factors.

This definition is made in several steps. We initially assign arbitrary labels 1, 2agd
arbitrary signs to the summation indices. The omlerq, 1, —1, 2, —2... is then chosen
for the function arguments. The order of the factors in the term, whicWam n ando
functions, is defined by the dictionary order of their arguments. The dictionary order
two lists of arguments is found in the usual way, by comparing in sequence correspont
elements of the two lists. Equal elements are ignored, and the first pair of unequal elem
determines the order.

Thus, we have completely defined the textual representation of a term, except for arbit
permutations and sign changes of the summation indices. Among all such permutations
sign changes we chose as canonical the one that yields the minimum textual represent
in the dictionary order sense. With this representation, two terms with different canoni
form correspond to the same diagram if and only if the canonical form of their couplil
coefficients is identical.

APPENDIX B

Identification of Reducible Diagrams

We consider, as described in the text, the diagram corresponding to the term. We add
dummy vertices at the free ends of the “entry” and “exit” lines labejethd —q, so that
every line connects exactly two vertices, and then assign arbitrary labels .1, 20 3he
vertices. For all pairs, j of vertices we find the numbér;; of lines that connedtand j.
Given the incidence matrik;; we can obtain the diagram and vice versa, so that the matr
constitutes a representation of the diagram. The identification of the reducible diagran
performed by searching for reducible paths in the incidence miagrixio find out whether
a diagram is still connected after a line has been severed (i.e., after a matrix elgmen
has been decreased by one), we use a very efficient graph-theoretical algorithm desc
in Ref. [39].
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